

SECTION II

TYPICAL PROCESS

INTRODUCTION

This section provides information relating to the setup of a typical 903e etching process.

These process parameters are presented as useful starting points and not as optimized processes. The process applications presented include contact/via, spacer, and nitride passivation etch. Process applications are followed by typical process performances for each application.

A typical process uses combinations of Sulfur Hexafluoride (SF₆), Freon 23 (CHF₃), and Helium (He). Process trend charts (refer to table 1) should be used to optimize the process for any specific application.

TYPICAL PROCESS (continued)

CONTACT/VIA

Typical Wafer Structure (903e)

Patterned Photoresist Mask (typically 8% exposed area) >3000 Å of dielectric SiO₂ (typically 8000 Å) Silicon and/or polysilicon (contact)/silicon or aluminum (via)

Process Specifications (903e)

Profile	85-90°
CD loss	<0.1 µm
Non-uniformity	<±10% (3σ)
Selectivity to silicon/polysilicon	≥10:1
Cleaning frequency	250-500 wafers

Process Parameters

Step 1 (nonselective etch step)

j.	Starting Point	Range
CHF ₃ (sccm) SF ₆ (sccm) He (sccm) Pressure (torr) Power (watts)	30 5 80 1.8 variable*	20-35 4-10 60-100 1.6-2.0 450-650
* i.e., size depender	nt: 450W for 4	11

550W for 5" 650W for 6"

Step 2 (selective etch step)

	Starting Point	Range
CHF ₃ (sccm) SF ₆ (sccm) He (sccm) Pressure (torr) Power (watts)	45 2.5 80 1.8 variable*	45-50 1.5-2.5 60-100 1.6-1.8 5,6,700
* i.e., size dependent 500W for 4" 600W for 5" 700W for 6"		

CONTACT/VIA (continued)

Step 1 should be run in a timed mode terminating 1000 Å before the first exposed polysilicon/silicon or aluminum. Step 2 will then selectively etch the remaining oxide, optically endpointing on the substrate, and the appropriate overetch time will be processed using the step 2 chemistry.

Typical Process Performance (903e)

ETCH RATES		
Film	Step 1 Å/min	Step 2 Å/min
PSG CVD oxide (undoped) Thermal	8000 6000 5000	6000 4500 4000

SELECTIVITIES		
Film	Step 1	Step 2 Å/min
Selectivity to PR Selectivity to polysilicon Selectivity to aluminum	>3:1 >3:1 >100:1	>5:1 ≥10:1 >100:1

TYPICAL PROCESS (continued)

NITRIDE PASSIVATION

Typical Wafer Structure (903e)

Patterned Photoresist Mask (typically 8% exposed area)PECVD Si3N48000 ÅPSG8000 ÅSilicon and/or aluminum substrate

Process Specifications (903e)

Profile	85-90°
CD loss	<0.1 µm
Non-uniformity	≤±10% (3σ)
Selectivity to silicon	≥5:1
Cleaning frequency	250-500 wafers

Process Parameters

	Starting Point	Range
CHF3 (sccm) SF6 (sccm) He (sccm) Pressure (torr) Power (watts)	35 5 80 1.8 variable*	25-45 3-10 60-100 1.6-2.0 450-650
* i e size denenden	t 450W for 4	11

1.e., size dependent 450W for 4" 550W for 5"

650W for 6"

Process Setup (903e)

This process can be run with one step and a timed overetch, but acceptable nonuniformity cannot be achieved on both oxide and nitride with the same one-step parameters. Therefore, Tegal recommends running a two-step process to optimize nonuniformity for each film (nitride/oxide). The first step will uniformly etch the nitride, endpointing on oxide, and the second step will uniformly etch the PSG, optically endpointing on the substrate.

PROCESS-18

NITRIDE PASSIVATION (continued)

Typical Process Performance (903e)

ETCH RATE	S	
Film	Step 1 Å/min	
Silicon Nitride PSG	6000 8000	

SELECTIVITIES	
Film	Step 1
Selectivity to PR Selectivity to silicon Selectivity to aluminum	≥3:1 ≥5:1 ≥100:1

TYPICAL PROCESS (continued)

LDD (Lightly Doped Drain) SPACER

Typical Wafer Structure (903e)

CVD SiO ₂ or TEOS	3000 Å
Patterned Poly	3500 Å
Thermal SiO ₂ gate	250 Å
Substrate	Silicon

Process Specifications

Non-uniformity	<10% 3 sigma	
Selectivity to silicon	>10:1	
Minimal silicon damage process		
No trenching of silicon al	long spacer sidewall	
Cleaning frequency 500 to 700 wafers		

Process Parameters

Steps 1 and 2 (optical endpoint and timed overetch)

	Starting Point	Range
CHF3 (sccm) SF ₆ (sccm) He (sccm) Pressure (torr) Power (watts)	45 2.5 80 1.8 variable*	40-50 1.5-3.0 60-100 1.8-2.2 500-700
* i.e., size dependent: 500W for 4" 600W for 5" 700W for 6"		

Step 1 should be run to optical endpoint on the silicon. The endpoint will be very sharp because of the large amount of exposed area; therefore, endpoint after a 1-volt drop in endpoint signal. Step 2 is a very short timed overetch.

LDD (Lightly Doped Drain) SPACER (continued)

Typical Process Performance (903e)

ETCH RATES	6
Film	Step 1 Å/min
CVD Thermal Oxide TEOS	4500 4500 4500

Step 1
>10:1

TYPICAL PROCESS (continued)

SLOPED OXIDE ETCH

In this process, the resist is baked at a high temperature to flow and slope the resist pattern. The slope of the resist is dependent on the type of resist, the temperature, and the duration of the bake. A plasma containing SF6 is then used to anisotropically etch the oxide. During the process, the sloped sides of the resist erode to progressively expose more oxide at the top to produce sloped sides (see figures 5 & 6). The slope profile is dependent on etch selectivity and pre-etch resist profile. A low selective etch, where resist and oxide etch at similar rates, produces more slope than a highly selective etch. Doped CVD oxide etches faster than thermal oxide and therefore CVD oxide produces a steeper, less sloped etch than thermal oxide in a given process.

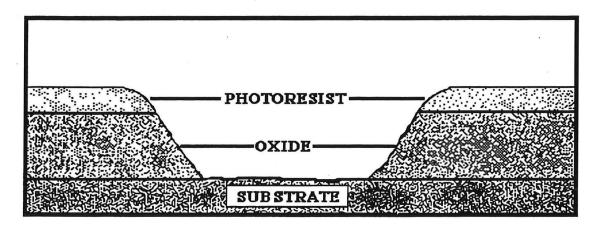
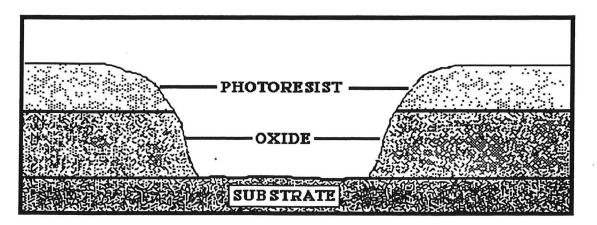



Figure 5. Low Selectivity-to-Slope Comparison

CLEANING PROCEDURE (903e)

DISCUSSION

Factory recommended cleaning and preventive maintenance procedures should be followed to obtain optimum performance and productivity.

The user should determine a Chamber cleaning frequency that is best suited to the particular production load/applications involved.

A Chamber cleaning should, of course, be performed whenever a change of film types is involved.

EQUIPMENT REQUIRED

- 1. Standard Field Engineer's tool box.
- 2. Clean, lint-free, wipes.
- 3. Isopropyl Alcohol (IPA).
- 4. Dummy Wafer.
- 5. Gloves, Acid-proof (Medium 80-202-196 Large 80-202-195)
- 6. Clean Conditioning wafers (10 minimum)

PRELIMINARY INSTRUCTIONS

1. Select and run the appropriate oxygen plasma clean recipe by pressing the clean option on the RofR, clean, wfr qty and more screen. The recommended clean recipe is:

O₂ Clean Channel:

Partial Pressure	. 500 mTorr	
CHF3	. 20 sccm	
Не	. 50 sccm	
Pressure	. 3000 - 4000 :	mTorr
Power	. 300 Watts	4"
	400 Watts	5"
	500 Watts	6"
Time	. 1800 to 2400 Chamber clea	

CAUTION

This process must be run with a dummy wafer if the Lower Electrode has metal pins. The clean process should be run with no wafer if the Lower Electrode has quartz pins. This wafer/no wafer option is software selectable.

TYPICAL PROCESS (continued)

PROCEDURE

- 1. Open the Top-Plate.
- 2. Inspect the Upper Electrode, Chamber sidewalls, on ceramics for polymer. If polymer remains, repeat the O₂ cleaning procedure.
- 3. Enable the N₂ vent valve by placing the PURGE switch to the ENABLE position (see figure 7).
- 4. Switch to QUICK flow (see figure 7).

Figure 7. Front Panel Switch Locations

NOTE

Insure the Upper Electrode, Chamber, and ceramics are free of polymer prior to performing step 5.

5. Insure a sufficient amount of N_2 is purging through the Upper Electrode. If little or no N_2 is flowing, consult the maintenance manual.

CAUTION

Never use abrasive pads on anodized surfaces.

6. Using a lint-free cloth & IPA, wipe the Upper Electrode, Chamber sidewall, and the ceramic.

7. Wipe the entire surface of the Lower Electrode and the ceramic.

NOTE

The Chamber should now be thoroughly clean.

- 8. Switch the N_2 vent value to SLOW flow and disable the vent value.
- 9. Close the top plate.
- 10. Using the **RofR** test, pump the Chamber to base pressure.

NOTE

Purging the Chamber with Helium assists in the outgassing and shortens the pumpdown time. TEGAL recommends the He flow be 80 sccm for 5-10 minutes.

11. Once the Chamber has reached base pressure and an acceptable leak rate, quit the R of R test. The Chamber should be 'seasoned' for the next film by cycling at least 10 conditioning wafers with the following seasoning recipe:

SF ₆	CHF ₃ He Press. Power			Power	Time		
3	45	80	1.75	450W 4" 550W 5" 650W 6"	2 min/wafer		

PROCESS TRENDS

The etching process is affected by changes in any of the various parameters.

The relationships between the various parameters and process trends are indicated in Table 1.

NOTE SELECTIVITY & POLYMERIZATION are adjusted by: Primarily...... Ratio of SF₆ to CHF₃. Secondarily...... RF Power.

NON-UNIFORMITY is adjusted by:

Primarily..... Pressure (Coarse adjustment). Secondarily...... Helium (Fine adjustment).

Table 1. Process Optimization (903e)

PARAMETER	ETCH R	H RATE SELECTIVIT		ΤΙVITY	POLYMERIZATION		NON-UNIFORMITY	
	CORRECT FOR		CORRECT FOR		CORRECT FOR		CORRECT FOR	
~	SLOW	FAST	LOW	HIGH	HIGH(3)	LOW(3)	EDGE-TO- CTR	CTR-TO EDGE
SF ₆ /CHF ₃ RATIO	(1)	¥	+	4		+	+	•
POWER	•	+	• (2)			+	+	¥
PRESSURE	-	_	4	¥	+	•	+	(4)
HELIUM		♥					\ (4)	

EXAMPLE

If the etch rate is low and selectivity is not a major concern, increase power and/or increase the SF₆:CHF₃ ratio to increase the etch rate.

Increasing power may affect uniformity, ie, cause center-to-edge clearing. An increase in pressure may also be necessary to maintain uniformity.

NOTE

Center-to-edge clearing is defined as etching faster at the center than the edges. Edge-to-center clearing is the opposite.

- (1) This is true only for low ratios (<1:1) of SF₆/CHF₃.
- (2) Reducing RF power mproves the selectivity but slows the etch rate and may induce polymer formation.

High selectivity is desirable for a second step & overetch step process. During this step, higher polymerization (SF₆:CHF₃ ratio reduction) is required to attain the desirable selectivity values.

- (3) The amount of CHF₃ influences the deposition of polymers in the Chamber, ie, more CHF₃, more polymers. SF_6 aids in removing these polymers. Of course, an increase of polymers can increase the selectivity.
- (4) Center-to-edge clearing that cannot be remedied by reducing the percentage of Helium and increasing the pressure may be due to 'loading effect'. Loading of the plasma can be caused by the amount of oxide exposed or the amount of oxygen in the etch. Greater than 15% exposed oxide will load a 50 sccm total flow plasma. Depending on the type of photoresist, solvents present, etc., the type of photoresist may also load the process.

To correct for center-to-edge clearing due to 'loading', increase the total flow of the process by increasing the flow of CHF₃ and SF₆, but keep these two gases in the same ratio. Increase the total fluorocarbon flow in 15% increments until the center-to-edge clearing pattern is remedied.

THIS PAGE LEFT BLANK INTENTIONALLY